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¥+—ie-shewn that confidence regions constructed by the repeated-sampliny
principle are asymptotically valid for sequential designs in general linear
models and nonlinear parameters.—~ The related questions of consistency of
parameter estimators and convergence of sequential design to an optimal design

are answered positively. An empirical finding of Ford and Silvey (1980) is

given a theoretical justification.
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SIGNIFICANCE AND EXPLANATION

For estimation of parameters in nonlinear models or nonlinear parameters
in linear models, sequential design of experiment is often used to best
utilize the information. It results in saving the number of runs. After the
termination of the experiment with a fixed sample size, inference (such as
hypothesis testing or confidence interval) about the parameter is made. The
classical repeated-sampling principal of inference can not be applied because
it relies on the repetition of the same design while in the sequential setting
it is not repeatable. By using the martingale as a technical tool, it is
shown that, at least for large samples, such inference is still justified.
The companion questions of consistency of parameter estimators and convergence

of sequential design to an optimal design are also answered. C:%%Vu,,ﬁdkp .
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The responsibility for the wording and views expressed in this descriptive
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ASYMPTOTIC INFERENCE FROM SEQUENTIAL DESIGN IN A NONLINEAR SITUATION

Ce Fo J. Wu

1. INTRODUCTION

A major difficulty in designing a nonlinear experiment is that the
performance of design depends on the unknown parameters. To utilize the
information fully, the experiment has to be conducted sequentially. The
choice of the next design point is determinéd by the estimate of the
unknown parameters based on the observations made to date; see, for
example, Box & Hunter (1965). Since the data thus generated are dependent
and the design points are not repeatable, it is not clear whether the
repeated sampling principle of inference can be applied here. Similar
inferential questions also arise in other contexts (Cox, 1982; Siegmund,
1980).

Ford & Silvey (1980) studied this question in a special example.
Their simulation study indicates that standard confidence intervals,
constructed by pretending that the design points were predetermined,
perform very well. In §2 we provide a theoretical justification of this
empirical finding. In §3 we consider the general problem of sequential
design and inference when the parameter of interest is a nonlinear smooth
function of the linear parameters in a general linear model. Three issues
to be studied are:

(A) consistency of the parameter estimator;
(B) asymptotic validity of the standard procedures for confidence
region;

(C) convergence of the sequential design, properly normalized, to
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an optimal design.
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355 Details are in §3. The answer to them is yes under quite weak

conditions. Crucial to our investigation is a martingale structure
underlying the problem. Issue (ii) in small samples was studied in an
unpublished manuscript by Ford, Titterington & Wu.
2. A SIMPLE EXAMPLE
Ford & Silvey (1980) considered the design problem for estimating

- the nonlinear function g(0) = - 01/(262) in the linear model

DB 2 T 2T

W y=0u+68u“+e=08v+e, v=(u,u’)

'? 1 2

ﬁ§ where y 1is an observed response corresponding to a control variable

1,48

o at level u, u € {~1,1], and e is an independent N(0,1) error.

R -

&0 Take the first two observations at u = %1. For r 2> 2, let Or =

(8_,,6 ) be the maximum likelihood estimator of © based on the

;%‘ first r observations, 9, = g(at). and J,. = v1v? +oeoot vtvg be

e

%&; the corresponding information matrix, Ve = (ur,ui)T. By maximization

:" "~ L) a

%ﬂ: of the Gateaux derivative at er of the Fisher information of 9,

¥ the next design point Upyd is chosen, from [-1,1], to maximize

‘ d

Aoy T -1 2 T

:l; dr(u) = (v Jr cg )%, Cg = (1, 29) .

3 r

o)

5

- It turns out that u,,q must be 1 or -1.

. . ¥

A Suppose that, among the first n observations, s, are taken

»'*l
!‘, —

=&2 at u=-1 and n-s, at u =1 with their means denoted by y_

&, Y —

. and y,. Note that s, is random. Ford & Silvey (1980) showed that
:: Y+’°1-92+e1 ’ Y_‘¢2‘ez"e1 ’ (2-1)
'.!

: with probability 1 and

hel * "

' 8/n * Ng(=1) = 1 = ng(1) = |92+e1|/(|02+e1| + |ez—e1|) ' (2.2)

%
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which is the probability placed at =1 by the optimal continucus
design n; that minimizes cg M-(“)cg over n, vhere M (n) is a
g-inverse of tﬁe normalized information matrix M(n) = E(va) with
n being a probability measure on u over [~1,1]. Note that M(n)
is singular if and only if lg(e)] -'%- For g(8) = - %v n;(-1) =1
for g(0) '-%. n;(1) = 1. The strong consistency of the maximum
likelihood estimator

6 = (8 /8 ) =3 (¥, -V, 7, +7)+0 (2.3)
follows from (2.1).

Can confidence intervals for g be constructed in the usual
manner? The answer is not so obvious since the observations are
dependent as a result of the sequential generation of the design
points. Repeated sampling of the sequential design results in
different choices of the design points {“r}' which makes the
distribution calculus quite intractable. If the pretence were made
that the design was chosen a priori, standard theory would give
(Ford & Silvey, 1980, (5.2))

q, t 0.3(cy 3" ey )"/ (2.4)
n n

as an approximate 95% confidence interval for g. An alternative to

(2.4) is to replace J, by nM(n: ) since, from (2.2),

Jh/n +> M(n;). The two versions agg asymptotically equivalent. The

latter was shown to perform remarkably well in the empirical study of

Ford & Silvey (1980). The empirical percentage coverages of the true

parameter are quite close to 95%. A theoretical justification for

(2.4) is now in order.
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From (2.3) and J,/n * H(ne). the asymptotic validity of (2.4)
can be established via the asymptotic normality of the normalized
statistic

/;(gn - g)

+ N(0,1) . (2.5)
-1, T - * 172
(28,) (cg M (“e)"g)

We shall give the proof separately for singular and nonsingular
*
M(na).
First consider g(6) = --%. The treatment of g(6) = % is
similar. Since ¢1 = 262 and 02 = 0, the numerator of (2.5) equals

/;(;_ - ¢2)/(;+ +';_). which can be approximated by /5';;(292)-1

via (2.1). Since n;(-n = 1, the denominator of (2.5) is (2«32)'1
and (2.5) can be approximated by /n ;;, whose asymptotic normality
follows from the central limit theorem on f;;';; and

s,/n * n;(-1) = 1. Here we use the fact that, given s,, the

observations taken at u = =1 are independent and identically

distributed.

For |g(®)] #~1. a more general result will be proved. Note

that

V== = _
gnsf(y--y+)/(y-"'y+)’MY-..: y.)

is a smooth function of ;; and ;;. Similarly, g = A(¢1,¢2),
where ¢1 = Ey,, ¢2 = Ey_. From the smoothness of A and (2.1), the
asymptotic distribution of /;(gn - g) 1is given by that of its first

order approximation

A (0)nly, = ¢) + A, (8)n(y_ - ¢,) (2.6)

where A1(¢) and A2(¢) are the partial derivatives of A at ¢ =
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i;; (01,¢2) with respect to ¢1 and ¢2. The denominator of (2.5)
ot
equals

5‘1& * *
3 A200)/ng(1) + B2 (4)/mg(-1) . (2.7)
)
o
1&3 Therefore, (2.5) would follow from the asymptotic normality of the
% ratio of (2.6) and (2.7), which is an easy consequence of
£ i, _ 2] i
. J; 81(Y+ - ¢1) + /; az(y- - ¢2) > N(o, r + ) (208)
el

! ne(1) ( 1
,%Q in distribution for any a4 and a,, whose proof is given in the
;g: Appendix.

o It is obvious froim the arquments that the normality assumption
=
_x on e in the linear model is not essential.
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' 3. GENERAL PROBLEM
AR
ﬁt' The above example is simple and special in that the observations
}:

are always taken at u = 1. Similar results will be obtained in this
section for a more general problem under additional assumptions.

We consider the general linear model

/ y = xTB + e
>
R where 6 is a p x 1 vector, and the design variable x can be
;Q chosen anywhere within a bounded design region X. Assumptions on €
e
% are given in (3.3). The g %X 1 vector parameter of interest is ¢ =
— g(8), which is a nonlinear smooth function of 6. Let 8 be the
‘j least squares estimator of © based on the first n observations
. : ~ ~
d (y4,x4)+ The variance-covariance matrix of Wn = q(en) is approxi-
- ted by 0%g" ()™M 'g'(8), wh = XyXE +e0.+ x.xT and g'(8)
- mate g n g [ ere Hn X1X1 eos xnxn g
Y
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is the derivative of g. The next design point Xn+1 18 chosen
from x € X to minimize

oM +xx™,8 ) = #(g"(8 )T M +x™ T 1g (8 )y (3.1)
where the "optimality criterion” ¢ is a scalar function. For the
example in §2, g =1 and ¢ is the identity map. Another choice
of x,,9 is to minimize the Fréchet derivative of ¢ at M, and

5n in the direction xxT (Silvey, 1980), that is,

-1 TA - ~
ii:+ Ao {(1 X)un + Axx ,en} 0(Mn,en)] . (3.2)

The next response y,.q is observed at x,,q and 6n+1 is defined
similarly. Since the {yn} are dependent, it is not obvious that
standard results in linear model theory still hold. Three major
issues to be studied are:

(A) Consistency of Gn: Does en + 0 with probability 1?

(B) Asymptotic distribution of en. Does (0n 6) Mn(en 0) + ¢ xp in
distribution?
Consistency of 02: 02 = Z(yi-xfen)zl(n-p) > 02 with

probability 1?

(C) Convergence of n-’Hn to an optimal design: Does n"Mn > D;¢
where D; = D(n*) is an optimal design minimizing
¢(9'(9)TD(n)q'(e)) over the normalized information matrix

D(m) = [, xx'n(ax), [ n(ax) = 12
Note that (A) implies the consistency of ;n to V¥ and (B)
implies the asymptotic validity of the standard confidence ellipsoid
for 6, where Fe is the upper a point of the F distribution:

~ T ~ A-z -1
{o : (6 -0) Mn(Sn-e)a <p (n-p)Fa(p.n-p)} .
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The interpretation of (C) will be given for a special case. Take
the optimality criterion to be the average of the asymptotic variancés
of the components of ah, that is, ¢ in (3.1) is the trace oy a
matrix. (C) says that the average variance of an for the design
{xyoecesx } is minimized as n » =.

Questions (A) and (B) will be studied for more general sequential
generation rules. Let x,,¢ be an arbitrary measurable function of

the past, (x49,¥qse+¢,%X,,¥p)e We assume that, for all i,

2

2
E(e, | € sever€ ) = 0, E(e] | Egrever€y ) = 0" <o, (3.3)

1
that is, & is a martingale difference sequence with variance 02-
We also assume that for some § > 0, with prcbability 1

}1+6/

{1log me(n) Amin(n) +0 , (3.4)

where Amin(n) and Xmax(n) are the minimum and maximum eigenvalues
of the random matrix M,. Property (3.4) implies Amin(n) + ®, Under
(3.3) - (3.4), the strong consistency of én to 0 follows from
Corollary 3 of Lai and Wei (1982). This answers (A).

Before studying (B), we point out an underlying martingale
structure that explaing why standard asymptotic results for the fixed
design problem hold for the sequential design problem under consider-
ation. 1In an - 0= M;’(x1e1 +eoet xhen), T x,€, 1is a martingale
since x; is a function of the past and € is a martingale
difference sequence. With the imposition of the growth rate condition
(3.4) on x40 the consistency of an follows from a martingale

-~

strong law of numbers. For the asymptotic normality of en' the

following stability condition on the random matrix M,: there exists
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3N a non-random positive definite matrix B, such that

-1 1/2 T, =2

?Q B, (M) + Ip and m:x xB x, * 0 in probability, (3.5)
;?& ensures that Bn - 6 can be approximated by Bh I X €0 whose
I
Zi% asymptotic normality follows from a martingale central limit

theorem. Note that the stability condition (3.5) is considerably

»
»

E;; weaker than the objective in (C) that M,/n converges to an optimal
{:( design matrix.

ii’ Uader (3.3) and (3.5), the asymptotic normality of an' i.e.
7E§ (Sn-e)Tun(a“-e) > ozx:, follows from Theorem 3 of lLai & Wei (1982).
fzi Under (3.3), the strong consistency of ;2 in (B) follows from Lemma
?:: 3 of Lai & Wei, whose only regularity condition, n-1log Xmax(n) + 0
Ei; is satisfied since the design region is assumed bounded. Therefore,
-?§ the standard confidence ellipsoid for 6 is asymptotically valid

=y under (3.5). The validity of the confidence region for ¢ obtained )
B

;gﬁf from the confidence ellipsoid for O by the g transformation needs
i the additional condition (3.4), which ensures the consistency of

‘;;‘ Bn. A confidence ellipsoid for V¢ can be constructed directly as
; e (v=-0"19' (6 )™ 9" (6 174 _-¥1e? < ¢ n-pIF (qnp)} .
;;2 Its asymptotic validity can be established from (A) and (B) under

ixi (3.3) - (3.5) as before.

1§£ We have answered questions (A) and (B) for very general rules
;ii that satisfy (3.3) - (3.5), which are, however, not easy to verify.
ié;; For the simple example of §2, these conditions are either satisfied or
Eg: not required. For general problems further discussions are given

”;g later in connection with (C).
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We now consider question (C). If the normalized matrix n"un
converges to a nonsingular optimal design matrix D., it ensures that
the conditions (3.4) - (3.5), required for (A) and (B), are satisfied.

The updating of M, is governed by

() My = D= T+ D, L (306
where x,,q 1is chosen according to (3.1) or (3.2), which depends on
the current estimate an' In the case where the criterion (3.1) or
(3.2) is evaluated at the true parameter 6, the algorithm (3.6) has
been studied extensively and the convergence of n"un to D; was
established for ¢ = determinant (Wynn, 1972; Pazman, 1974) and ¢ =
trace (Wu & Wynn, 1978), assuming that D; is nonsingular. By a

)

continuity argument, if en converges to 6 with probability 1,

then n'1Mn in (3.1) or (3.2) converges to D; with probability

1, for the same criterion. Since D; is assumed nonsingular, the
above result does not cover the example in §2 with |g(8)| =-%-

The strong consistency of an' essential for the above argument,
depends on the growth rate condition (3.4) on the random matrix M.,
which is not automatically satisfied by the selection rules (3.1) or
(3.2). To ensure (3.4), the rules have to be modified so that the
minimum eigenvalue of M, grows to infinity at a rate no less than
(log n)1+6 for some § > 0. That means, occasionally, we have to
switch from (3.1) or (3.2) to a rule that maximizes the minimum
eigenvalue of the augmented design matrix. The strong consistency of
an is then guaranteed. It would be interesting to see if the

convergence results for n'1Mn cited above still hold for the

modified rules. It would then imply (3.5) and the asymptotic validity
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all be satisfied for such rules.
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Proof of (2.8)

From (2.2), the left-~hand side of (2.8) can be approximated by

n-g
* -1/2 -1/2 ¢'n

. a,(ng(1)) ““(n-s ) L Tlyg,me) ¢

N =1

2 . (A.1)

z * -1/2 -1/2 ¢n

o a,(ng(=1))" "8 ) (v _-¢)) -

i=1

-

j{ Since, given Sn yj+ - ¢1 and yj_ - ¢2 are independent and

.~ *

x identically distributed, (A.1) with s, replaced by c, = nne(-1)

& converges to the right-hand side of (2.8) from the central limit

"

1"

j theorem. It remains to prove that in probability,

T{ s c

‘ -1/2 «¢n _ ~1/2 n

s, Ly =6 - o Tys e v 0, (A.2)

) ’ j=1 j=1

o

o and a similar expression for n ~ 8, (A.2) follows easily from

« sn/cn + 1 and the boundedness in probability of

. - 8 - S "
) sn1/2 ),n(yj_-¢2) and (cn-sn) /2 )_ (yJ -¢2 .

[ 3=1 I=s +1 3
N f
>
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